Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity

نویسندگان

  • IAN M. CARTWRIGHT
  • JUSTIN J. BELL
  • JUNKO MAEDA
  • MATTHEW D. GENET
  • ASHLEY ROMERO
  • YOSHIHIRO FUJII
  • AKIRA FUJIMORI
  • HISASHI KITAMUTA
  • TADASHI KAMADA
  • DAVID J. CHEN
  • TAKAMITSU A. KATO
چکیده

The present study investigated the effect of targeted mutations in the DNA-dependent protein kinase catalytic subunit and phosphorylation domains on the survival of cells in response to different qualities of ionizing radiation. Mutated Chinese hamster ovary V3 cells were exposed to 500 MeV/nucleon initial energy and 200 keV/μm monoenergetic Fe ions; 290 MeV/nucleon initial energy and average 50 keV/μm spread-out Bragg peak C ions; 70 MeV/nucleon initial energy and 1 keV/μm monoenergetic protons; and 0.663 MeV initial energy and 0.3 keV/μm Cs137 γ radiation. The results demonstrated that sensitivity to high linear energy transfer radiation is increased when both S2056 and T2609 clusters each contain a point mutation or multiple mutations are present in either cluster, whereas the phosphoinositide 3 kinase cluster only requires a single mutation to induce the sensitized phenotype of V3 cells. Additionally, the present study demonstrated that sensitivity to DNA cross-linking damage by cisplatin only requires a single mutation in one of the three clusters and that additional point mutations do not increase cell sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Damage and Cellular Stress Responses Threonine 2609 Phosphorylation of the DNA-Dependent Protein Kinase Is aCritical Prerequisite for Epidermal Growth Factor Receptor–Mediated Radiation Resistance

The EGF receptor (EGFR) contributes to tumor radioresistance, in part, through interactions with the catalytic subunit of DNA-dependent protein kinase (DNA-PKc), a key enzyme in the nonhomologous end joining DNA repair pathway. We previously showed that EGFR-DNA-PKcs interactions are significantly compromised in the context of activating mutations in EGFR in non–small cell lung carcinoma (NSCLC...

متن کامل

Evaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients

Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...

متن کامل

Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks.

DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Her...

متن کامل

ATR-dependent phosphorylation of DNA-dependent protein kinase catalytic subunit in response to UV-induced replication stress.

Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) upon ionizing radiation (IR) is essential for cellular radioresistance and nonhomologous-end-joining-mediated DNA double-strand break repair. In addition to IR induction, we have previously shown that DNA-PKcs phosphorylation is increased upon camptothecin treatment, which induces replication stress and replication...

متن کامل

Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015